Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Antiviral Res ; 208: 105428, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2129937

ABSTRACT

The continuous emergence of SARS-CoV-2 variants prolongs COVID-19 pandemic. Although SARS-CoV-2 vaccines and therapeutics are currently available, there is still a need for development of safe and effective drugs against SARS-CoV-2 and also for preparedness for the next pandemic. Here, we discover that astersaponin I (AI), a triterpenoid saponin in Aster koraiensis inhibits SARS-CoV-2 entry pathways at the plasma membrane and within the endosomal compartments mainly by increasing cholesterol content in the plasma membrane and interfering with the fusion of SARS-CoV-2 envelope with the host cell membrane. Moreover, we find that this functional property of AI as a fusion blocker enables it to inhibit the infection with SARS-CoV-2 variants including the Alpha, Beta, Delta, and Omicron with a similar efficacy, and the formation of syncytium, a multinucleated cells driven by SARS-CoV-2 spike protein-mediated cell-to-cell fusion. Finally, we claim that the triterpene backbone as well as the attached hydrophilic sugar moieties of AI are structurally important for its inhibitory activity against the membrane fusion event. Overall, this study demonstrates that AI is a natural viral fusion inhibitor and proposes that it can be a broad-spectrum antiviral agent against current COVID-19 pandemic and future outbreaks of novel viral pathogens.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Saponins , Humans , COVID-19 Vaccines , Giant Cells , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Asteraceae/chemistry , Saponins/pharmacology
2.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: covidwho-1686902

ABSTRACT

Sesquiterpene lactones (SL), characterized by their high prevalence in the Asteraceae family, are one of the major groups of secondary metabolites found in plants. Researchers from distinct research fields, including pharmacology, medicine, and agriculture, are interested in their biological potential. With new SL discovered in the last years, new biological activities have been tested, different action mechanisms (synergistic and/or antagonistic effects), as well as molecular structure-activity relationships described. The review identifies the main sesquiterpene lactones with interconnections between immune responses and anti-inflammatory actions, within different cellular models as well in in vivo studies. Bioaccessibility and bioavailability, as well as molecular structure-activity relationships are addressed. Additionally, plant metabolic engineering, and the impact of sesquiterpene lactone extraction methodologies are presented, with the perspective of biological activity enhancement. Sesquiterpene lactones derivatives are also addressed. This review summarizes the current knowledge regarding the therapeutic potential of sesquiterpene lactones within immune and inflammatory activities, highlighting trends and opportunities for their pharmaceutical/clinical use.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Immunomodulating Agents/pharmacology , Lactones/pharmacology , Sesquiterpenes/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Asteraceae/chemistry , Drug Discovery , Humans , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification , Lactones/chemistry , Lactones/isolation & purification , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
3.
Molecules ; 26(13)2021 Jun 25.
Article in English | MEDLINE | ID: covidwho-1288960

ABSTRACT

(1) Background: The COVID-19 pandemic lacks treatments; for this reason, the search for potential compounds against therapeutic targets is still necessary. Bioinformatics tools have allowed the rapid in silico screening of possible new metabolite candidates from natural resources or repurposing known ones. Thus, in this work, we aimed to select phytochemical candidates from Peruvian plants with antiviral potential against three therapeutical targets of SARS-CoV-2. (2) Methods: We applied in silico technics, such as virtual screening, molecular docking, molecular dynamics simulation, and MM/GBSA estimation. (3) Results: Rutin, a compound present in Peruvian native plants, showed affinity against three targets of SARS-CoV-2. The molecular dynamics simulation demonstrated the high stability of receptor-ligand systems during the time of the simulation. Our results showed that the Mpro-Rutin system exhibited higher binding free energy than PLpro-Rutin and N-Rutin systems through MM/GBSA analysis. (4) Conclusions: Our study provides insight on natural metabolites from Peruvian plants with therapeutical potential. We found Rutin as a potential candidate with multiple pharmacological properties against SARS-CoV-2.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plants/chemistry , Plants/metabolism , Asteraceae/chemistry , Asteraceae/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus Nucleocapsid Proteins/antagonists & inhibitors , Coronavirus Nucleocapsid Proteins/chemistry , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/chemistry , Databases, Factual , Humans , Lepidium/chemistry , Lepidium/metabolism , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Peru , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/chemistry , Rutin/chemistry , Rutin/pharmacology , SARS-CoV-2
4.
Int J Mol Sci ; 22(9)2021 Apr 23.
Article in English | MEDLINE | ID: covidwho-1231492

ABSTRACT

Three germacranolides, as well as five flavonoids, natural steroid and simple phenolic compounds, were isolated from the inflorescence of Stizolophus balsamita growing in Iran. The paper presents active compounds found for the first time in the inflorescence of this species. The flavonoids, simple phenolic compounds and natural steroids have been isolated for the first time in the genus Stizolophus. The MTT assay was employed to study in vitro cytotoxic effects of the taxifolin against human fibroblasts. We also evaluate the possible biological properties/cosmetic effects of Stizolophus balsamita extract and taxifolin on the human skin. Sixty healthy Caucasian adult females with no dermatological diseases were investigated. We evaluate the effects of S. balsamita extract and taxifolin on skin hydration and transepidermal water loss (TEWL). It was revealed that S. balsamita extract might decrease TEWL level and fixed the barrier function of the epidermis. The presence of bioactive phytochemical constituents in S. balsamita inflorescences makes them a valuable and safe source for creating new cosmetics and medicines.


Subject(s)
Asteraceae/chemistry , Inflorescence/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Skin/drug effects , Adult , Cosmetics , Female , Healthy Volunteers , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL